Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome.
نویسندگان
چکیده
The Saethre-Chotzen syndrome is characterized by premature fusion of cranial sutures resulting from mutations in Twist, a basic helix-loop-helix (bHLH) transcription factor. We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain. We observed that Twist mRNA and protein levels were reduced in mutant cells and that the Twist mutation increased cell growth in mutant osteoblasts compared with control cells. The mutation also caused increased alkaline phosphatase and type I collagen expression independently of cell growth. During in vitro osteogenesis, Twist mutant cells showed increased ability to form alkaline phosphatase-positive bone-like nodular structures associated with increased type I collagen expression. Mutant cells also showed increased collagen synthesis and matrix production when cultured in aggregates, as well as an increased capacity to form a collagenous matrix in vivo when transplanted into nude mice. In contrast, Twist mutant osteoblasts displayed a cell-autonomous reduction of osteocalcin mRNA expression in basal conditions and during osteogenesis. The data show that genetic deletion of Twist causing reduced Twist dosage increases cell growth, collagen expression, and osteogenic capability, but inhibits osteocalcin gene expression. This provides one mechanism that may contribute to the premature cranial ossification induced by deletion of the bHLH Twist domain in Saethre-Chotzen syndrome.
منابع مشابه
The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome.
Most targeted gene mutations are recessive and analyses of gene function often focus on homozygous mutant phenotypes. Here we describe parts of the expression pattern of M-twist in the head of developing wild-type mice and present our analysis of the phenotype of heterozygous twist- null animals at around birth and in adults. A number of twist -null heterozygous mice present skull and limb defe...
متن کاملThe TWIST gene, although not disrupted in Saethre-Chotzen patients with apparently balanced translocations of 7p21, is mutated in familial and sporadic cases.
The TWIST gene maps to 7p21 and mutations in the gene have been reported in the Saethre-Chotzen form of craniosynostosis. The position of the Saethre-Chotzen gene has previously been refined by FISH analysis of four patients carrying balanced translocations involving 7p21 which suggested that it was located between D7S488 and D7S503. We report here that the breakpoints in four translocation pat...
متن کاملCharacterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre-Chotzen syndrome.
Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, ...
متن کاملTranslocation breakpoint maps 5 kb 3' from TWIST in a patient affected with Saethre-Chotzen syndrome.
Saethre-Chotzen syndrome, a common autosomal dominant craniosynostosis in humans, is characterized by brachydactyly, soft tissue syndactyly and facial dysmorphism including ptosis, facial asymmetry, and prominent ear crura. Previously, we identified a yeast artificial chromosome that encompassed the breakpoint of an apparently balanced t(6;7) (q16.2;p15.3) translocation associated with a mild f...
متن کاملMutations in snail family genes enhance craniosynostosis of Twist1 haplo-insufficient mice: implications for Saethre-Chotzen Syndrome.
In Drosophila, mutations in the Twist gene interact with mutations in the Snail gene. We show that the mouse Twist1 mutation interacts with Snai1 and Snai2 mutations to enhance aberrant cranial suture fusion, demonstrating that genetic interactions between genes of the Twist and Snail families have been conserved during evolution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 107 9 شماره
صفحات -
تاریخ انتشار 2001